412 research outputs found

    M-Branes on k-center Instantons

    Full text link
    We present analytic solutions for membrane metric function based on transverse kk-center instanton geometries. The membrane metric functions depend on more than two transverse coordinates and the solutions provide realizations of fully localized type IIA D2/D6 and NS5/D6 brane intersections. All solutions have partial preserved supersymmetries.Comment: 22 pages, 5 figure

    D6-branes and torsion

    Full text link
    The D6-brane spectrum of type IIA vacua based on twisted tori and RR background fluxes is analyzed. In particular, we compute the torsion factors of the (co)homology groups H_n and describe the effect that they have on D6-brane physics. For instance, the fact that H_3 contains Z_N subgroups explains why RR tadpole conditions are affected by geometric fluxes. In addition, the presence of torsional (co)homology shows why some D6-brane moduli are lifted, and it suggests how the D-brane discretum appears in type IIA flux compactifications. Finally, we give a clear, geometrical understanding of the Freed-Witten anomaly in the present type IIA setup, and discuss its consequences for the construction of semi-realistic flux vacua.Comment: 35 pages, 1 figure. One reference adde

    A class of non-supersymmetric orientifolds

    Get PDF
    We study type IIB orientifolds on T^{2d}/Z_N with supersymmetry broken by the compactification. We determine tadpole cancellation conditions including anti-branes and considering different actions for the parity Omega. Using these conditions we then obtain the spectrum of tachyons and massless states. Various examples with N even correspond to type 0B orientifolds.Comment: 49 pages, Late

    Intersecting D-Branes on Shift Z2 x Z2 Orientifolds

    Full text link
    We investigate Z2 x Z2 orientifolds with group actions involving shifts. A complete classification of possible geometries is presented where also previous work by other authors is included in a unified framework from an intersecting D-brane perspective. In particular, we show that the additional shifts not only determine the topology of the orbifold but also independently the presence of orientifold planes. In the second part, we work out in detail a basis of homological three cycles on shift Z2 x Z2 orientifolds and construct all possible fractional D-branes including rigid ones. A Pati-Salam type model with no open-string moduli in the visible sector is presented.Comment: 36 pages, 4 figures, refs. adde

    Branes on Generalized Calibrated Submanifolds

    Full text link
    We extend previous results on generalized calibrations to describe supersymmetric branes in supergravity backgrounds with diverse fields turned on, and provide several new classes of examples. As an important application, we show that supersymmetric D-branes in compactifications with field strength fluxes, and on SU(3)-structure spaces, wrap generalized calibrated submanifolds, defined by simple conditions in terms of the underlying globally defined, but non-closed, 2- and 3-forms. We provide examples where the geometric moduli of D-branes (for instance D7-branes in 3-form flux configurations) are lifted by the generalized calibration condition. In addition, we describe supersymmetric D6-branes on generalized calibrated 3-submanifolds of half-flat manifolds, which provide the mirror of B-type D-branes in IIB CY compactifications with 3-form fluxes. Supersymmetric sets of such D-branes carrying no homology charges are mirror to supersymmetric sets of D-branes which are homologically non-trivial, but trivial in K-theory. As an additional application, we describe models with chiral gauge sectors, realized in terms of generalized calibrated brane box configurations of NS- and D5-branes, which are supersymmetric but carry no charges, so that no orientifold planes are required in the compactification.Comment: 40 pages, 3 figures, references adde

    M5-brane geometries, T-duality and fluxes

    Full text link
    We describe a duality relation between configurations of M5-branes in M-theory and type IIB theory on Taub-NUT geometries with NSNS and RR 3-form field strength fluxes. The flux parameters are controlled by the angles between the M5-brane and the (T)duality directions. For one M5-brane, the duality leads to a family of supersymmetric flux configurations which interpolates between imaginary self-dual fluxes and fluxes similar to the Polchinski-Strassler kind. For multiple M5-branes, the IIB configurations are related to fluxes for twisted sector fields in orbifolds. The dual M5-brane picture also provides a geometric interpretation for several properties of flux configurations (like the supersymmetry conditions, their contribution to tadpoles, etc), and for many non-trivial effects in the IIB side. Among the latter, the dielectric effect for probe D3-branes is dual to the recombination of probe M5-branes with background ones; also, a picture of a decay channel for non-supersymmetric fluxes is suggested.Comment: 30 pages, 3 figure

    Fluxes, moduli fixing and MSSM-like vacua in a simple IIA orientifold

    Full text link
    We study the effects of adding RR, NS and metric fluxes on a T^6/(\Omega (-1)^{F_L} I_3) Type IIA orientifold. By using the effective flux-induced superpotential we obtain Minkowski or AdS vacua with broken or unbroken supersymmetry. In the Minkowski case some combinations of real moduli remain undetermined, whereas all can be stabilized in the AdS solutions. Many flux parameters are available which are unconstrained by RR tadpole cancellation conditions allowing to locate the minima at large volume and small dilaton. We also find that in AdS supersymmetric vacua with metric fluxes, the overall flux contribution to RR tadpoles can vanish or have opposite sign to that of D6-branes, allowing for new model-building possibilities. In particular, we construct the first N=1 supersymmetric intersecting D6-brane models with MSSM-like spectrum and with all closed string moduli stabilized. Some axion-like fields remain undetermined but they are precisely required to give St\"uckelberg masses to (potentially anomalous) U(1) brane fields. We show that the cancellation of the Freed-Witten anomaly guarantees that the axions with flux-induced masses are orthogonal to those giving masses to the U(1)'s. Cancellation of such anomalies also guarantees that the D6-branes in our N=1 supersymmetric AdS vacua are calibrated so that they are forced to preserve one unbroken supersymmetry.Comment: 61 pages, Latex, v2: added references, v3: minor correction

    An amphitropic cAMP-binding protein in yeast mitochondria

    Get PDF
    ABSTRACT: We describe the first example of a mitochondrial protein with a covalently attached phos-phatidylinositol moiety acting as a membrane anchor. The protein can be metabolically labeled with both stearic acid and inositol. The stearic acid label is removed by phospholipase D whereupon the protein with the retained inositol label is released from the membrane. This protein is a cAMP receptor of the yeast Saccharomyces cereuisiae and tightly associated with the inner mitochondrial membrane. However, it is converted into a soluble form during incubation of isolated mitochondria with Ca2+ and phospholipid (or lipid derivatives). This transition requires the action of a proteinaceous, N-ethylmaleimide-sensitive component of the intermembrane space and is accompanied by a decrease in the lipophilicity of the cAMP receptor. We propose that the component of the intermembrane space triggers the amphitropic behavior of the mitochondrial lipid-modified CAMP-binding protein through a phospholipase activity. Only in recent years specific fatty acids have been recog-nized to play important roles in the association of proteins with membranes. Both noncovalent and covalent interactions be-tween fatty acids and proteins have been reported. Among the latter are GTP-binding proteins (Molenaar et al., 1988)

    A Review of Distributions on the String Landscape

    Full text link
    We review some basic flux vacua counting techniques and results, focusing on the distributions of properties over different regions of the landscape of string vacua and assessing the phenomenological implications. The topics we discuss include: an overview of how moduli are stabilized and how vacua are counted; the applicability of effective field theory; the uses of and differences between probabilistic and statistical analysis (and the relation to the anthropic principle); the distribution of various parameters on the landscape, including cosmological constant, gauge group rank, and SUSY-breaking scale; "friendly landscapes"; open string moduli; the (in)finiteness of the number of phenomenologically viable vacua; etc. At all points, we attempt to connect this study to the phenomenology of vacua which are experimentally viable.Comment: Invited review, IJMP A. LaTeX. 39 pages. References adde
    • …
    corecore